Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.09.03.21262611

ABSTRACT

The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole exome sequencing data of about 4,000 SARS-CoV-2-positive individuals were used to define an interpretable machine learning model for predicting COVID-19 severity. Firstly, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthly, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management.


Subject(s)
COVID-19
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.27.21250593

ABSTRACT

Host genetics is an emerging theme in COVID-19 and few common polymorphisms and some rare variants have been identified, either by GWAS or candidate gene approach, respectively. However, an organic model is still missing. Here, we propose a new model that takes into account common and rare germline variants applied in a cohort of 1,300 Italian SARS-CoV-2 positive individuals. Ordered logistic regression of clinical WHO grading on sex and age was used to obtain a binary phenotypic classification. Genetic variability from WES was synthesized in several boolean representations differentiated according to allele frequencies and genotype effect. LASSO logistic regression was used for extracting relevant genes. We defined about 100 common driver polymorphisms corresponding to classical "threshold model". Extracted genes were demonstrated to be gender specific. Stochastic rare more penetrant events on about additional 100 extracted genes, when occurred in a medium or severe background (common within the family), simulate Mendelian inheritance in 14% of subjects (having only 1 mutation) or oligogenic inheritance (in 10% having 2 mutations, in 11% having 3 mutations, etc). The combined effect of common and rare results can be described as an integrated polygenic score computed as: (nseverity - nmildness) + F (mseverity - mmildness) where n is the number of common driver genes, m is the number of driver rare variants and F is a factor for appropriately weighing the more powerful rare variants. We called the model "post-Mendelian". The model well describes the cohort, and patients are clustered in severe or mild by the integrated polygenic scores, the F factor being calibrated around 2, with a prediction capacity of 65% in males and 70% in females. In conclusion, this is the first comprehensive model interpreting host genetics in a holistic post-Mendelian manner. Further validations are needed in order to consolidate and refine the model which however holds true in thousands of SARS-CoV-2 Italian subjects.


Subject(s)
COVID-19
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.04.20225680

ABSTRACT

BackgroundCOVID-19 presentation ranges from asymptomatic to fatal. The variability in severity may be due in part to impaired Interferon type I response due to specific mutations in the host genome or to autoantibodies, explaining about 15% of the cases when combined. Exploring the host genome is thus warranted to further elucidate disease variability. MethodsWe developed a synthetic approach to genetic data representation using machine learning methods to investigate complementary genetic variability in COVID-19 infected patients that may explain disease severity, due to poly-amino acids repeat polymorphisms. Using host whole-exome sequencing data, we compared extreme phenotypic presentations (338 severe versus 300 asymptomatic cases) of the entire (men and women) Italian GEN-COVID cohort of 1178 subjects infected with SARS-CoV-2. We then applied the LASSO Logistic Regression model on Boolean gene-based representation of the poly-amino acids variability. FindingsShorter polyQ alleles ([≤]22) in the androgen receptor (AR) conferred protection against a more severe outcome in COVID-19 infection. In the subgroup of males with age <60 years, testosterone was higher in subjects with AR long-polyQ ([≥]23), possibly indicating receptor resistance (p=0.004 Mann-Whitney U test). Inappropriately low testosterone levels for the long-polyQ alleles predicted the need for intensive care in COVID-19 infected men. In agreement with the known anti-inflammatory action of testosterone, patients with long-polyQ ([≥]23) and age>60 years had increased levels of C Reactive Protein (p=0.018). InterpretationOur results may contribute to design reliable clinical and public health measures and provide a rationale to test testosterone treatment as adjuvant therapy in symptomatic COVID-19 men expressing AR polyQ longer than 23 repeats. FundingMIUR project "Dipartimenti di Eccellenza 2018-2020" to Department of Medical Biotechnologies University of Siena, Italy (Italian D.L. n.18 March 17, 2020). Private donors for COVID research and charity funds from Intesa San Paolo. BoxesO_ST_ABSEvidence before this studyC_ST_ABSWe searched on Medline, EMBASE, and Pubmed for articles published from January 2020 to August 2020 using various combinations of the search terms "sex-difference", "gender" AND SARS-Cov-2, or COVID. Epidemiological studies indicate that men and women are similarly infected by COVID-19, but the outcome is less favorable in men, independently of age. Several studies also showed that patients with hypogonadism tend to be more severely affected. A prompt intervention directed toward the most fragile subjects with SARS-Cov2 infection is currently the only strategy to reduce mortality. glucocorticoid treatment has been found cost-effective in improving the outcome of severe cases. Clinical algorithms have been proposed, but little is known on the ability of genetic profiling to predict outcome and disclose novel therapeutic strategies. Added-value of this studyIn a cohort of 1178 men and women with COVID-19, we used a supervised machine learning approach on a synthetic representation of the uncovered variability of the human genome due to poly-amino acid repeats. Comparing the genotype of patients with extreme manifestations (severe vs. asymptomatic), we found that the poly-glutamine repeat of the androgen receptor (AR) gene is relevant for COVID-19 disease and defective AR signaling identifies an association between male sex, testosterone exposure, and COVID-19 outcome. Failure of the endocrine feedback to overcome AR signaling defect by increasing testosterone levels during the infection leads to the fact that polyQ becomes dominant to T levels for the clinical outcome. Implications of all the available evidenceWe identify the first genetic polymorphism predisposing some men to develop a more severe disease irrespectively of age. Based on this, we suggest that sizing the AR poly-glutamine repeat has important implications in the diagnostic pipeline of patients affected by life-threatening COVID-19 infection. Most importantly, our studies open to the potential of using testosterone as adjuvant therapy for severe COVID-19 patients having defective androgen signaling, defined by this study as [≥]23 PolyQ repeats and inappropriate levels of circulating androgens.


Subject(s)
COVID-19
4.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3692488

ABSTRACT

Background: COVID-19 presentation ranges from asymptomatic to fatal. The variability in severity is due in part to specific mutations in the host genome. GWAS effectively identifies genetic variability due to common biallelic polymorphisms. Efforts in genetic research are trying to identify significant associations in patients infected by SARS-CoV-2. Methods: We developed a synthetic approach to genetic data representation using machine learning methods to investigate complementary genetic variability in COVID-19 infected patients that might explain disease severity due to rare variants and poly-amino acids repeat polymorphisms. Using host whole-exome sequencing data, we compared extreme phenotypic presentations of an Italian cohort of 939 subjects infected with SARS-CoV-2. We then applied the LASSO Logistic Regression model on Boolean gene-based representation of the entire set of human genes. Findings: Polymorphisms/rare variants in certain genes, including short polyQ (≤22) of the androgen receptor ( AR ), conferred protection against severe forms of COVID-19. We then demonstrated that testosterone was higher in males with AR long-polyQ (≥23), confirming receptor resistance (p=0.004 Mann-Whitney U test). Finally, long-polyQ (≥23) correlates with increased inflammation markers (p=0.021) and fibrinogen consumption (p=0.039), confirming the anti-inflammatory role of testosterone. Interpretation: Our results contribute to designing reliable clinical and public health measures and provide a rationale to test testosterone supplementation as adjuvant treatment in symptomatic COVID-19 men expressing AR polyQ longer than 23. Funding: MIUR project “Dipartimenti di Eccellenza 2018-2020” to Department of Medical Biotechnologies University of Siena, Italy; Private donors for COVID research (Italian D.L. n.18 March 17, 2020).Declaration of Interests: The authors declare no competing interests.Ethics Approval Statement: The GEN-COVID study was approved by the University Hospital of Siena Ethics Review Board (Protocol n. 16917, dated March 16, 2020).


Subject(s)
COVID-19
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.24.20161307

ABSTRACT

Within the GEN-COVID Multicenter Study, biospecimens from more than 1,000 SARS-CoV-2-positive individuals have thus far been collected in the GEN-COVID Biobank (GCB). Sample types include whole blood, plasma, serum, leukocytes, and DNA. The GCB links samples to detailed clinical data available in the GEN-COVID Patient Registry (GCPR). It includes hospitalized patients (74.25%), broken down into intubated, treated by CPAP-biPAP, treated with O2 supplementation, and without respiratory support (9.5%, 18.4%, 31.55% and 14.8, respectively); and non-hospitalized subjects (25.75%), either pauci- or asymptomatic. More than 150 clinical patient-level data fields have been collected and binarized for further statistics according to the organs/systems primarily affected by COVID-19: heart, liver, pancreas, kidney, chemosensors, innate or adaptive immunity, and clotting system. Hierarchical Clustering analysis identified five main clinical categories: i) severe multisystemic failure with either thromboembolic or pancreatic variant; ii) cytokine storm type, either severe with liver involvement or moderate; iii) moderate heart type, either with or without liver damage; iv) moderate multisystemic involvement, either with or without liver damage; v) mild, either with or without hyposmia. GCB and GCPR are further linked to the GEN-COVID Genetic Data Repository (GCGDR), which includes data from Whole Exome Sequencing and high-density SNP genotyping. The data are available for sharing through the Network for Italian Genomes, found within the COVID-19 dedicated section. The study objective is to systematize this comprehensive data collection and begin identifying multi-organ involvement in COVID-19, defining genetic parameters for infection susceptibility within the population and mapping genetically COVID-19 severity and clinical complexity among patients.


Subject(s)
COVID-19
6.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.03.20047977

ABSTRACT

In December 2019, an initial cluster of interstitial bilateral pneumonia emerged in Wuhan, China. A human-to-human transmission was assumed and a previously unrecognized entity, termed coronavirus-disease-19 (COVID-19) due to a novel coronavirus (SARS-CoV-2) was described. The infection has rapidly spread out all over the world and Italy has been the first European country experiencing the endemic wave with unexpected clinical severity in comparison with Asian countries. It has been shown that SARS-CoV-2 utilizes angiotensin converting enzyme 2 (ACE2) as host receptor and host proteases for cell surface binding and internalization. Thus, a predisposing genetic background can give reason for inter-individual disease susceptibility and/or severity. Taking advantage of the Network of Italian Genomes (NIG), here we mined whole-exome-sequencing data of 6930 Italian control individuals from five different centers looking for ACE2 variants. A number of variants with a potential impact on protein stability were identified. Among these, three more common missense changes, p.(Asn720Asp), p.(Lys26Arg), p.(Gly211Arg) were predicted to interfere with protein structure and stabilization. Rare variants likely interfering with the internalization process, namely p.(Leu351Val) and p.(Pro389His), predicted to interfere with SARS-CoV-2 spike protein binding, were also observed. Comparison of ACE2 WES data between a cohort of 131 patients and 258 controls allowed identifying a statistically significant (P value <0,029) higher allelic variability in controls compared to patients. These findings suggest that a predisposing genetic background may contribute to the observed inter-individual clinical variability associated with COVID-19, allowing an evidence-based risk assessment leading to personalized preventive measures and therapeutic options.


Subject(s)
COVID-19 , Lung Diseases, Interstitial
SELECTION OF CITATIONS
SEARCH DETAIL